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a b s t r a c t

In this work an artificial neural network (ANN) is used to correlate experimentally determined and
numerically computed Nusselt numbers and friction factors of three kinds of fin-and-tube heat exchang-
ers having plain fins, slit fins and fins with longitudinal delta-winglet vortex generators with large tube-
diameter and large the number of tube rows. First the experimental data for training the network was
picked up from the database of nine samples with tube outside diameter of 18 mm, number of tube rows
of six, nine, twelve, and Reynolds number between 4000 and 10,000. The artificial neural network con-
figuration under consideration has twelve inputs of geometrical parameters and two outputs of heat
transfer Nusselt number and fluid flow friction factor. The commonly-implemented feed-forward back
propagation algorithm was used to train the neural network and modify weights. Different networks with
various numbers of hidden neurons and layers were assessed to find the best architecture for predicting
heat transfer and flow friction. The deviation between the predictions and experimental data was less
than 4%. Compared to correlations for prediction, the performance of the ANN-based prediction exhibits
ANN superiority. Then the ANN training database was expanded to include experimental data and
numerical data of other similar geometries by computational fluid dynamics (CFD) for turbulent and lam-
inar cases with the Reynolds number of 1000–10,000. This in turn indicated the prediction has a good
agreement with the combined database. The satisfactory results suggest that the developed ANN model
is generalized to predict the turbulent or/and laminar heat transfer and fluid flow of such three kinds of
heat exchangers with large tube-diameter and large number of tube rows. Also in this paper the weights
and biases corresponding to the neural network architecture are provided so that future research can be
carried out. It is recommended that ANNs might be used to predict the performances of thermal systems
in engineering applications, especially to model heat exchangers for heat transfer analysis.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

A heat exchanger is such an equipment that the process of heat
or/and mass exchange between two and more steams at different
temperatures occurs. For saving energy and resources, it is essen-
tial to increase the thermal performance of heat exchangers. Gen-
erally, it is an effective way to employ extended surfaces (or
referred to as finned surfaces) on the gas side to compensate for
the low heat transfer coefficient, which maybe 10-to-100 times
smaller than that on the liquid-side, meaning that the dominant
resistance is usually on the gas side. Fin-and-tube heat exchangers
(FTHEs) are such kinds of heat exchangers having mechanically (or
ll rights reserved.
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hydraulically) expanded round tubes in a block of parallel contin-
uous fins with one or more rows, as sketched in Fig. 1. FTHEs are
extensively employed in chemical engineering and HVAC&R (heat-
ing, ventilation and air conditioning, refrigeration) applications
such as compressor intercoolers, air-coolers and fan coils. Adoption
of finned surfaces is to disturb the pattern of flow and destroy the
boundary layer. Accordingly, to satisfy the desire to enhance heat
transfer, a variety of finned surfaces has been developed and ap-
plied successfully. These finned surfaces include crimped spiral
fin, plain fin, slotted fin, louvered fin and fin with delta-wing lon-
gitudinal vortex generator, etc. Therefore, performance data of heat
transfer and friction factor for these finned surfaces for fin-and-
tube heat exchangers is very important for accurate compact heat
exchanger design [1–3]. Many efforts are devoted on experimental
studies and numerical computations of FTHEs, and lots of useful re-
sults and correlations have been presented. Typical references are
qualified by [4–9].
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Nomenclature

A output variable of ANN
b bias of ANN neuron
Dc fin collar outside diameter, Dc = Do + 2df (mm)
Di inside diameter of tube (mm)
Do outside diameter of tube (mm)
Er absolutely relative error (%)
Fp fin pitch (mm)
Fs fin distance (mm)
f friction factor
M number of sets of data for training
Nt number of tube rows
N number of sets of data for testing
Nu Nusselt number
Pl longitudinal tube pitch (mm)
Pr Prandtl number
Pt transverse tube pitch (mm)
rms root-mean-squares error
R definition by Eq. (9a)
Re Reynolds number, ReDc ¼ qmDc=l

Sh height of slit (mm)
Sl length of slit (mm)
Sw width of slit (mm)
Vh height of vortex generator (mm)
Vl length of vortex generator (mm)
u the net input by adding all the inputs
w weight matrix of ANN connections

Greek symbols
a angle of attack (deg)
df fin thickness (mm)
r definition by Eq. (9b)
u activation function
Dp pressure drop (Pa)

Superscripts
c numerical data
e experimental data
p prediction by ANN
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In order to evaluate the heat exchanger performances, efficient
and accuracy methods for prediction of heat transfer and pressure
drop have to be developed. The computational intelligence tech-
niques, such as artificial neural networks (ANNs), genetic algo-
rithms (GAs), fuzzy logic, have been successfully applied in many
scientific researches and engineering practices. ANNs have been
developed for about two decades and are now widely used in var-
ious application areas such as performance prediction, pattern rec-
ognition, system identification, and dynamic control and so on,
since ANNs provide better and more reasonable solutions. ANN of-
fers a new way to simulate nonlinear, or uncertain, or unknown
complex systems without requiring any explicit knowledge about
input–output relationship. ANN has more attractive advantages.
It can approximate any continuous or nonlinear function by using
certain network configuration. It can be used to learn complex
nonlinear relationship from a set of associated input–output vec-
tors. It can be implemented to dynamically simulate and control
unknown or uncertain processes. In recent years, ANNs have been
used in thermal systems for heat transfer analysis, performance
prediction and dynamic control of heat exchangers [10–25]. For
example, Yang and Sen [10] and San and Yang [11] reviewed works
in dynamic modeling and controlling of heat exchangers using
Fig. 1. A typical fin-and-tube heat exchanger (a liquid flows int
ANNs and GAs. Two interesting examples were presented to sup-
port the superiority of ANNs and GAs compared to correlations.
Diaz et al. [12–15] did lots of work in steady and dynamic simula-
tion and control of a single-row fin-and-tube heat exchanger using
ANNs. Pacheco-Vega et al. [16,17] also made heat transfer analysis
for a fin-tube heat exchanger based on limited experimental data
with air and R22 as fluids, and predicted heat transfer rates of
air–water heat exchangers using soft computing and global regres-
sion. Islamoglu et al. [18,19] predicted heat transfer rate for a wire-
on-tube heat exchanger and predicted outlet temperature and
mass flow rate for a non-adiabatic capillary tube suction line heat
exchanger. Xie et al. [20] and Wang et al. [21] conducted heat
transfer analysis and performance prediction of shell-and-tube
heat exchangers with helical baffles based on their experimental
data. Ertunc et al. [22–24] conducted neural networks analysis
and prediction of an evaporative condenser, a cooling tower, a
cooling coil. Zdaniuk et al. [25] combined their data and other dat-
abases to predict the performance of helically finned tubes by a
single-output ANN. Beside for heat exchanger applications, other
applications of artificial neural networks for heat transfer analysis
and fluid flow process predictions can be found in [26–32]. From
the aforementioned successful applications, it is shown that ANNs
o the tubes and a gas flows across the finned-tube bundle).
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are efficient techniques for estimation or prediction of heat trans-
fer and fluid flow process, and are well suitable to thermal analysis
in engineering systems, especially in heat exchangers.

In the above-mentioned literature, most works were done in
thermal analysis focusing on fin-and-tube heat exchangers with
small numbers of tube rows (mostly less than 4) or small tube-
diameter (mostly in the range of 8–13 mm), which are commonly
used in the HVAC&R engineering, or shell-and-tube heat exchang-
ers, e.g., [12–17]. However, ANNs have not yet been applied to cor-
relate and predict heat transfer and flow friction of fin-and-tube
heat exchangers with large number of tube rows and large tube-
diameter. In some certain industrial applications of large industry,
such as intercoolers of multi-stage compressors employed in high
pressure and temperature plants like gas turbine plant, the number
of tube rows (might be larger than 4 or much larger) and the outside
diameter of the tubes is large (might be larger than 13 mm or much
larger). The intercooler is so used that the cooling air at compressor
intake results in decrease of compressor work and thereby increase
of the net work output of plants. Most of the above-mentioned ANN
configurations only have a single output, e.g., [18–21,25–32], which
will lead to more sets of networks should be developed for different
output. For this reason, the objective of this paper is to develop and
apply an ANN for heat transfer analysis of fin-and-tube heat
exchangers having large tube-diameter and large number of tube
rows with experimental data based on the back propagation algo-
rithm for training the network. Different network configurations
were studied to search an optimal network configuration for pre-
diction. Then, the ANN was again trained with the combined data-
base from the experimental data and numerical data by
computational fluid dynamics (CFD) for turbulent cases, and finally
the ANN was secondly trained by the combined database of exper-
imental data and numerical data from turbulent and laminar com-
putations. This paper extends the work in paper [33], where only
turbulent heat transfer and fluid flow were correlated using an
ANN. Although the ANN methodology is not new, the present work
contributes to application of ANN in such heat exchangers.

2. Experimental data and FTHEs geometry

FTHE is one of the successful improvements of the tubular heat
exchanger. As shown in Fig. 1, the hot air or flue gas flows across a
finned tube bundle while cold water or refrigerant flows inside the
round tubes that are arranged staggered. The heat is transmitted
through the tube wall and finned surfaces. Fin patterns are diversi-
fied as varying their geometries. The common types are plain fins,
wavy fins, slotted fins, louvered fins and fins with longitudinal vor-
tex generators (LVGs). On the other side, the common types of
tubes are round, flat and oval. The heat transfer and pressure drop
characteristics on the air side can be obtained by experimental
measurements or exact numerical computations. Fortunately,
much literature has contributed to FTHEs and established most
useful correlations.

Experiments have been conducted to measure convective heat
transfer and pressure drop of FTHEs with large number of large-
diameter tube rows by Tang et al. [34–36] at Xi’an Jiaotong Univer-
sity, China. Nine samples of three kinds of fin-and-tube heat
exchangers are tested, the types of fins are plain fin, slit fin, fin with
Table 1
Geometric parameters of the fin-and-tube heat exchangers.

Type Di Do Dc Fp Pt Pl

Plain 16 18 18.6 3.2 42 34
Slit 16 18 18.6 3.2 42 34
LVG 16 18 18.6 3.2 42 34
longitudinal vortex generations (LVGs), and the number of tube
rows are six, nine, and twelve, which may not commonly appear
in HVAC&R. It should be emphasized that the outside diameter of
the tube is 18 mm, which also is not used generally in refrigeration
engineering. The detailed geometrical parameters are tabulated in
Table 1 and schematically shown in Fig. 2 (hereafter, the fins with
LVGs are called LVG fins). All tubes and fins are made of copper.
The tubes are in staggered arrangement. The thickness of fin is
0.3 mm. Experiments were performed for Reynolds number rang-
ing from 4000 to 10,000 on the air side where the flow might be
considered in transition to turbulent flow. The experimental appa-
ratus and procedures are described in details in [34–36].

Ninety-six sets of experimental data were obtained and divided
into two parts: one is for training data, the rest is for testing data.
Experimentally determined friction factors and Nusselt numbers
are plotted in Fig. 3. The typical uncertainties of friction factor
and Nusselt number are 8.5% and 6.9%, respectively. A total of 96
sets of data were run in the network, of which 75 sets of experi-
mental data were used to train the network, while the rest of 21
sets of data were used to test the network. Note that 78% of the
experimental data was used for training the network. The selection
of test data from each heat exchanger may be somewhat arbitrary.
However, these data are based on approximate uniform variation
of Re and based on total number of data points from each heat
exchanger.

Tang et al. [34–36] also correlated their experimental data, as
shown in Fig. 3, in the following forms.

For plain fins

Nu ¼ 0:080Re0:71 ð1aÞ
f ¼ 12:83Re�0:36 ð1bÞ

For slit fins

Nu ¼ 0:057Re0:77 ð2aÞ
f ¼ 13:28Re�0:35 ð2bÞ

For LVG fins

Nu ¼ 0:094Re0:71 ð3aÞ
f ¼ 10:68Re�0:34 ð3bÞ

Tang et al. [34] stated that the Eqs. (1–3) were shown to corre-
late the experimental data well. Also, these correlations can be re-
ferred to engineering applications or further research such as
optimizations or predictions.

3. Neural network configuration

An ANN consists of a great number of interconnected neurons. A
block diagram of the model of a neuron is shown in Fig. 4. A neuron
is a basic information processing and operating unit in a neural
network. Specifically, a signal xi is input to connect to a neuron
with the synaptic weight wi, and then all input signals weighted
by their respective synapses are summed as a net input u. A bias
b is applied to the neuron so that the increase or decrease of net
input depends on whether the bias is positive or negative. Finally
the increased or decreased net input is imported into an activation
Sw Sl Sh Vl Vh a N

– – – – – – 6,9,12
2.2 16 1.0 – – – 6,9,12
– – – 5 1.85 45 6,9,12
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function resulting in the output. The activation function is so
developed that the amplitude of the net output of a neuron is lim-
ited. The input-to-output operation of a neuron is formulized
mathematically as follows

uk ¼
Xm

i¼1

wk
i xi ð4aÞ

yk ¼ uðuk þ bkÞ ¼ u
Xm

i¼1

wk
i xi þ bk

 !
¼ u

Xm

i¼0

wk
i xi

 !
ð4bÞ

It is noted that the bias may be accounted for as a new input fixed at
x0 ¼ �1 with its weight b and then combined with the original in-
puts as a whole input. Therefore the above equation has been refor-
mulated to combine inputs and bias by replacing subscript 1 with 0
as seen in the last term of the right-hand side of Eq. (4b).

Fig. 5 illustrates a typical full-connected network configuration.
Such an ANN consists of a series of layers with a number of neu-
rons (circle points in Fig. 5, in this paper called nodes referring to
figure). Each connection between two neurons with a real value
is called weight. Neurons are gathered together into a column
called a layer. Among various types of ANNs, the feed-forward or
multilayer perception neural network is widely used in engineering
applications. The input information is propagated forward through
the network, while the output error is back propagated through the
networks for updating the weights. As shown in Fig. 5, the first
layer with six neurons and last layer with two neurons are called
input layer and output layer, respectively, while the others in the
middle are called hidden layers. The configuration in Fig. 5 has
one hidden layer with four neurons (such type is briefly written
as 6-4-2 in this paper). There are many ways to design and imple-
ment ANNs. However, it is difficult to find an optimal network,
considering the uniqueness of a real problem. Thus, a priori choice,
such as selection of network topology, training algorithm and net-
work size should be made based on experience in order to keep the
task to a manageable proportion.

It is a very common way to use the back propagation (BP) algo-
rithm to train artificial neural networks. The main idea of this algo-
rithm is to minimize the cost function by the steepest descent
method to add small changes in the direction of minimization. It
simply consists of back-propagating the output errors to the net-
work by modifying the weight matrices, that is, adding a correction
weight Dw to a synaptic weight w. More descriptions of the BP
algorithm can be found in references [10,11]. Varying the learning
rate dynamically or using momentum terms can improve the con-
vergence speed. The mathematical background, the procedures for
training and testing the ANN, and description of the BP algorithm
can be found in the reference [37]. Although the BP algorithm
needs long time to converge, the algorithm has gained a remark-
able popularity in the neural network community, since it is rela-
tively easy to implement in engineering applications, as well as
in thermal and energy applications, see [10–32]. Also the BP algo-
rithm might provide solutions to large and difficult problems [37].
Thus in this study the BP is implemented to train the network.

For such kinds of fin-and-tube heat exchangers at hand, twelve
independent parameters were fed into the input layer of the net-
work: Reynolds numbers Re, the number of tube rows Nt, diameter
of tube Dc, fin pitch Fp, tube pitches Pt and Pl, geometry of the slit fin
Sw, Sl and Sh and geometry of the LVG fin Vl, Vh and a. The notations
of geometrical parameters are illustrated in Fig. 2. The main reason
for selection of these input variables is that the structure of the
heat exchanger core due to the aforementioned differences be-
tween the three exchangers with different fins can be distin-
guished by these input parameters. For example, Sw = Sl = Sh = 0
for the plain fin and the LVG fin while Vl = Vh = a = 0 for the plain
fin and the slit fin. The effect of mass flow rate can be considered
by the Reynolds number. The output layer contains two parame-
ters: Nusselt number, Nu, and friction factor, f. It should be noticed
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that the ANN prediction is off-line and is carried out after all exper-
imental data have been reduced.

There are three basic types of activation functions: Threshold
function, Piecewise linear function and Sigmoid function [37]. The
forms of function are briefly re-written as follows.

Threshold function : uðxÞ ¼
1; x P 0
0; x < 0

�
ð5aÞ

Piecewise linear function : uðxÞ ¼
1; x P 0:5
x; 0:5 > x > �0:5
0; x 6 �0:5

8><
>: ð5bÞ

Sigmoid function : uðxÞ ¼ 1
1þ e�x

ð5cÞ

In the present study, the popular sigmoid function was adopted
in hidden layers and output layer. This is because such a function
can exhibit a graceful balance between linear and nonlinear behav-
ior, and it has a special characteristic feature of differentiability,
which is an important feature for neural networks. Obviously,
the net summation of input, u + b in Eq. (4), is corresponded to x
of the activation function, Eq. (5). In addition, it should be noted
that the sigmoid function has the asymptotic limits of [0,1]. Conse-
quently, it is desirable to normalize all the input–output data with
the largest and smallest values of each of the data sets, since the
variables of input–output data have different physical units and
range sizes. Thus, to avoid any computational difficulty, all of the
input–output pairs were normalized in [0.15,0.85] range based
on previous experience [10–17]. That is, the input variables were
scaled through the transformations:

xi ¼
xi � xi;min

xi;max � xi;min
ðSmax � SminÞ þ Smin ð6Þ
Here Smax and Smin are 0.85 and 0.15, respectively, xi,max and xi,min

are the maximum and minimum values of individual input variable.
So, even though original data is composed of dimensional unit and
non-dimensional unit, the scaled input data is surely within the
range of 0.15–0.85.

4. ANN development and assessment

In order to predict heat transfer and friction with high precision,
attempts should be done to develop some ANN configurations and
finally find a relative optimal or good configuration for prediction.
As aforementioned, the drawback of the BP algorithm is that it may
get stuck in a local minimum, and therefore the learning rate was
changed during the training process of the network. In the present
study, the learning rate was finally set to 0.4 based on previous
experience [10–17]. On the other side, there are no well-defined
criteria for convergence of the BP algorithm. It is a logical way to
define such a criterion that the global maximum error is below
an accepted level. In this study the training of the neural network
was terminated when the maximum number of training cycles was
reached, since the maximum relative error between the output of
the network and the target output was less than 5% after a series
of trial tests. Note that the selection of the number is a trial-and-er-
ror process in which it may be changed if the performance of the
neural network during the training is not good enough. Finally,
the number of training cycles was chosen to be 200,000. The rela-
tive error of every predicted output was defined by

Er ¼ jA
e � Apj

Ae � 100% ð7Þ

where Ap is the predicted results, that is output of ANN, Ae is the
experimental data, that is the target output. The maximum error
was determined by the maximum value of the maximum relative
error of the two output variables.

During the training process of the neural network, the perfor-
mance of the network was evaluated by calculating the root-
mean-square (rms) values of the output error

rms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM

i¼1

Ae � Ap

Ae

� �2
vuut ð8Þ

M is the number of sets of data for training the neural network. The
final rms error was determined by the maximum value of the rms
error of the two output variables. As an example, the errors during
training 12-9-5-2 network configuration with two hidden layers
with 9 and 5 nodes, respectively, were shown in Fig. 6(a). It can
be seen that the maximum error asymptotically reached at about
120,000 cycles, while the rms error is reached at 80,000 cycles. At
the end of training process, the relative errors for the training data
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Table 2
Comparison of errors by different ANN configurations.

Configuration Train error Test error

Er (%) rms (%) R r

12-6-2 5.01623 1.67797 1.000348 0.004791
12-7-2 4.60366 1.56802 1.001196 0.004792
12-8-2 4.58049 1.15767 1.000517 0.004919
12-10-5-2 3.81628 1.43443 1.001223 0.006014
12-9-6-2 3.94815 1.40578 0.999446 0.007262
12-9-5-2 4.08936 1.44235 1.000385 0.004753
12-9-4-2 4.06629 1.54432 1.000615 0.006675
12-8-5-2 3.80853 1.46035 1.001296 0.004747
12-10-8-5-2 3.86046 1.37920 1.002111 0.004996
Correlations 8.04714 3.50697 0.994462 0.014185

Note: the error is the maximum value among the errors of the two output variables.
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were shown in Fig. 6(b). Most errors are within 2%, and the maxi-
mum relative error is about 4%.

Generalization is an ANN quality. It is the ability to provide
accurate output results when the input data that have never been
used for training is fed into the trained network. The network
topology and size, such as selection of number of hidden layers
and number of hidden nodes, will affect the predicted perfor-
mance. Large networks can learn complex problems, but require
more efforts and time to train and to report. Consequently, the
selection process of a neural network configuration is a compro-
mise between a principle that minimizes the prediction error and
the network size keeping as small as possible. The performance
of the trained network is evaluated by comparing its prediction
with the data set aside for testing. Thus, in this study, by the aid
of searching relatively good configuration for prediction, ten differ-
ent ANN configurations were studied, as shown in Table 2. R and r
are defined by

R ¼ 1
N

XN

i¼1

Ri ¼
1
N

XN

i¼1

Ae

Ap ð9aÞ

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

ðR� RiÞ2

N

vuut ð9bÞ
Note that in Table 2, R and r are the maximum values which
were determined from R and r of the three output variables,
respectively. R reflects the average accuracy of the prediction,
while r reflects the scatter of the prediction. Both quantities are
important for an assessment of the relative success of the ANN
analysis [10,11]. For three layers, when the number of hidden
nodes is increased from 6 to 8, R and r of the former are smaller
than those of the latter. For four layers, when the number of hidden
nodes of the first hidden layer is increased to 10 and the number of
hidden nodes of the second hidden layer is increased to 5, R and r
become larger. This indicates that adding more hidden nodes may
not improve the predicted results. From Table 2, 12-10-8-5-2 net-
work own smaller Er and rms than those of 12-9-5-2, however, the
R and r of the former are larger than those of the latter. At this
point, the configurations with four layers have higher prediction
accuracy than those with five layers. It is also noted that adding
more hidden layers may not make the prediction better. Thus, in
this case, configuration 12-9-5-2 is selected for testing, with small-
est R = 1.000385 and r = 0.004753 and the maximum relative error
is about 4% with most of them being less than 2% (see Fig. 6). The
training process of different networks is shown in Fig. 7. Clearly,
the training process of five layers 12-10-8-5-2 is so unstable that
the relative error is involved, and although the error of three layers
is smaller at the beginning stage than those of four layers, then the
final error of the former is increased so as to be higher than at of
the latter. Also, for the same number of layers, the training process
of 12-9-5-2 is so smoothly decreasing while the process of the
other two networks is somewhat increased resulting in slightly
higher errors at the end of the training process.
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The Nusselt number and friction factor trained by ANN 12-9-5-2
plotted against experimental data is shown in Fig. 8. The network
is trained with 78% of experimental data as described earlier. It can
be clearly seen that both predicted results trained by the 12-9-5-2
network are very close to the corresponding measured data. The
maximum averaged relative error between the trained predictions
and measured data is less than 5%, with an rms error of 1.44%. The
prediction and the corresponding error of friction factor and Nus-
selt number of the heat exchangers by the ANN 12-9-5-2 is shown
in Fig. 9. The straight line indicates perfect prediction. From the fig-
ure, it is found that the predictions of Nusselt number and friction
factor close to the measured data well as the points approach the
line closely. The maximum prediction error is also less than 5%
with most of the errors being less than 2%. As listed in Table 2,
R = 1.000385 and r = 0.004753 suggest the good accuracy and scat-
ter of the predictions. Accordingly, it should be noticed that the
accuracy and the precision of predicted results are remarkable.
The selection process of the network is similar to that in [33].

In Table 2, the errors by dimensionless power-law correlations
from Tang et al. [34] are included. It is found from Table 2 that
the errors of the correlations are much larger than those of the cho-
sen ANN configuration. A comparison of prediction by ANN and
power-law correlations is shown in Fig. 10. From the figure, it is
observed that the predictions by correlations are not as good as
those predictions by the 12-9-5-2 network. As examined in figure,
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most points of the prediction by ANN are close to the straight lines
whereas most points of the prediction by correlations are slightly
far from the lines. Therefore, for the presented heat exchangers
at hand, ANN is superior to power-law correlations for prediction.
Similar conclusions are also stated in [13,16,17,20–25].

5. Evaluation of ANN with CFD data

It is shown in the preceding section that the presented ANN
configuration 12-9-5-2 can predict the heat exchanger perfor-
mance well. Now independent data is used to evaluate this ANN,
because the currently developed ANN is obviously satisfying the
experimental data, of which most were used to train the ANN. In
order to generalize the ANN 12-9-5-2 application, another data-
base should be found for evaluation. Fortunately the data of heat
exchangers with large number of tube rows and large tube-diam-
eter has been provided through computational fluid dynamics
(CFD) technique by Tang et al. [38]. Although the number of data
sets is relatively small, the data can be used to test the ANN.

Tang et al. [38] used the commercial code FLUENT 6.1 for the
numerical solution of the Navier–Stokes and energy equations
using the standard two-equation k � e turbulence model. All vari-
ables, including velocity components, pressure and temperature
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are averaged and applied to a control volume. The coupling be-
tween pressure and velocity is implemented by the SIMPLEC algo-
rithm. It was shown that at moderate Reynolds number the mean
deviation of Nu number is 6.0% with the maximum deviation being
15.8% and the mean deviation of f is 8.3% with the maximum devi-
ation being 11.1% compared experimental data. It is worthwhile to
note that for numerical simulation of heat transfer and friction fac-
tor characteristics, such an agreement between simulations and
test results should be regarded satisfactory. Because in the simula-
tions, the model is a perfect heat exchanger and many small details
have been simplified. More details about the computations and re-
sults can be found in [38].

The evaluation of the ANN 12-9-5-2 configuration with the
CFD data are shown in Fig. 11. From the observation of the
two sub-figures it is shown that the neural network does not
predict as well as experimental data. Much of the data is over-
predicted by ANN with the maximum relative error being
around 20%. However, most errors are below 10%. The results
indicate differences between experimental data and computa-
tional data. This is supported by the fact that a small difference
is presented in the geometries between experimental samples
and geometrical size for computations. Without a clear advan-
tage of the presented ANN with certain weights for predicting
other models, suggests that it is necessary to combine experi-
mental data and computational data to develop an integrated
ANN with changing weights of the ANN internal connections.
But for an engineering application, the currently trained ANN
associated with its weights might be applied to predict the per-
formance of heat exchangers, since the precision of the involved
turbulence model with the CFD is also not guaranteed.

6. ANN trained with a combined database

6.1. Turbulent model of ANN

It is a very common way to get a ‘‘real” or ‘‘best” value by multi-
ple measurements and computations. Thus if an ANN is trained
with a database combining the experimental data and computa-
tional data, the network might provide a useful tool to predict
the performance of such a kind of FTHEs with large number of tube
rows and tube-diameter. To develop such a tool, the ANN 12-9-5-2
is now trained with the combined database including the previous
experimental data used for selecting the ANN 12-9-5-2 and the
numerical data by CFD. Here the numerical data is not only bor-
rowed from the above database, as shown in Fig. 3, but also
adopted from additional data through CFD computations [38,39],
as used for validation of the network 12-9-5-2 in the preceding
section. The prediction is shown in Fig. 12. From the figures, the
predicted data is close to the experimental and numerical data.
The R and r of the ANN with the specific weights are 1.00322
and 0.00977. Also, the majority of predicted data points are less
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than 5% from the combined data, as shown in Fig. 13. Therefore
based on the presented prediction so far, the ANN 12-9-5-2 trained
with the combined database of experimental and numerical data
appears to be the ‘‘best” available prediction tool for obtaining tur-
bulent flow and heat transfer for heat exchangers with large num-
ber of tube rows and large tube-diameter.

So for convenient use by engineers or researchers, the weights
and biases under the ANN 12-9-5-2 are listed below. By inserting
the sets of weights and biases, the turbulent flow and heat transfer
of heat exchangers can be optimistically obtained. Thus at the pres-
ent, the ANN is updated once with new weights and biases.

For the first layer, 108 weights and 9 biases are:

w12;9 ¼

9:70 3:18 4:34 6:55 0:75 2:82 7:72 7:18 4:58

6:94 0:43 �6:61 �0:93 �6:80 5:93 2:74 �1:31 �7:61

�1:35 �0:57 0:98 �1:53 1:16 �4:04 �1:96 �1:04 �2:21

�1:32 �0:54 1:01 �1:50 1:19 �4:01 �1:93 �1:01 �2:19

�1:35 �0:57 0:98 �1:53 1:16 �4:04 �1:96 �1:04 �2:21

�1:32 �0:54 1:01 �1:50 1:19 �4:01 �1:93 �1:01 �2:19

�2:55 0:52 0:15 0:34 0:01 0:00 �0:49 �0:10 �1:08

�2:52 0:55 0:19 0:37 0:04 0:03 �0:46 �0:07 �1:04

�2:55 0:52 0:15 0:34 0:01 0:00 �0:50 �0:10 �1:08

1:62 �1:70 2:63 1:39 13:24 �6:96 1:49 1:99 8:90

�3:71 �3:67 �3:61 �1:67 �5:38 7:47 �2:77 0:13 1:70

�1:73 �2:94 �7:10 2:14 �18:18 12:88 �2:26 �0:48 2:66

2
66666666666666666666666666666666664

3
77777777777777777777777777777777775

;

b9 ¼

�2:67

�1:12

1:99

�3:03

2:36

�8:05

�3:90

�2:05

�4:40

2
6666666666666666666666664

3
7777777777777777777777775

For the second layer, 45 weights and 5 biases are:

w9;5¼

0:78 �3:59 �1:17 0:12 0:08
�2:66 �1:91 �2:63 0:31 �2:28
1:50 �9:20 1:72 2:89 �0:52
�4:89 4:96 �0:60 �2:58 �4:47
�1:03 8:13 �0:83 �5:48 0:46
�1:94 �7:08 1:19 �1:36 �0:24
�1:67 �0:35 1:19 �6:77 �1:27
2:25 0:95 �4:22 6:82 �4:90
2:93 1:87 1:39 �8:32 �0:22

2
66666666666666664

3
77777777777777775

; b5¼

1:84
1:71
2:22
�0:84
�0:84

2
6666664

3
7777775
;

For the third layer, 10 weights and 2 biases are:

w5;2 ¼

�3:88 �1:93
�0:27 2:37
�1:21 2:77
�0:13 4:13
�4:43 7:06

2
6666664

3
7777775
; b2 ¼

4:08
�3:17

� �
6.2. Laminar and turbulent model for ANN

It must be recalled here that the so far firstly-updated ANN
is suitable to predict the heat exchanger performance for
turbulent heat transfer and fluid flow, and the experimental and
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Fig. 14. Predictions of Nu and f by ANN with turbulent database.
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computational Reynolds number is in the range of 4000–10,000.
However, as mentioned above, the generality is a very important
feature of a well-established ANN. In the foregoing section, the
turbulent model of the developed ANN is satisfactory for the
conditions of turbulent flow and heat transfer. A heuristic ques-
tion is raised: whether the above developed ANN 12-9-5-2 can
be applied for laminar heat transfer and fluid flow at the low
Reynolds numbers? In some particular situations the mass flow
rate is low or the frontal area is so large that the entering veloc-
ity becomes small, and then the low Reynolds number appears
and hence laminar flow and heat transfer is expected. On the
other hand, turbulence with enhanced intensity of the heat
transfer will generally lead to a dramatically increased pressure
loss. The laminar condition for heat exchangers is sometimes de-
signed in certain industrial application. Returning to the raised
question and to answer it with explicitly, it is suggested that
the testing work should be conducted. Fortunately, the authors
[39,40] presented some numerical data for validation of the
firstly-updated ANN.

In previous works of the authors, laminar flow and heat trans-
fer of the presented heat exchangers were computed. The three-
dimensional computations were carried out in Cartesian coordi-
nates with the velocity–pressure coupling handled by the SIMPLE
algorithm. The tube is assumed to be at constant temperature be-
cause the large heat transfer coefficient inside the tube and that
the thermal conductivity of the tube wall is high while a low heat
transfer coefficient prevails at the fins outside the tubes. But the
temperatures in fin and solid are computed simultaneously under
a conjugated manner. The effects of Reynolds number, the num-
ber of tube rows, tube-diameter, tube pitches are observed so
that the corresponding data is picked up from these effects.
Now these data is first for testing the ANN 12-9-5-2. The compu-
tational Reynolds number is ranged from 1000 to 6000 with fron-
tal velocity being 0.47 to 4 m/s. More details of the computations
can be found in Xie et al. [39,40]. Also, in those works the multi-
ple correlations of the Nusselt number and friction factor are
provided with the averaged deviations being 3.7% and 6.5%,
respectively. These correlations are listed follows for later
comparisons.

Nu ¼ 1:565Re0:3414 Nt �
Fp

Do

� ��0:165 Pt

Pl

� �0:0058

ð10aÞ

f ¼ 20:713Re�0:3489 Nt �
Fp

Do

� ��0:168 Pt

Pl

� �0:6562

ð10bÞ

Having picked up the database, the test work is now carried out.
Since predictions can be directly obtained by feeding the inputs,
the corresponding parameters of the numerical computations are
input into the firstly-updated 12-9-5-2 network. The prediction
is plotted in Fig. 14. It is apparently concluded that the predictions
of the Nusselt number and hence the heat transfer, as well as the
friction factor and hence the flow resistance are far from the com-
putational database. Most over-predictions for the friction factor
and most under-predictions for the Nusselt number are resulted.
The outcome suggests a substantial difference between the turbu-
lent and laminar convective heat transfer. The conclusion of the
predictions is supported by the fact that the so far developed
ANN is only trained and tested with databases of experimental
and computational turbulent flow and heat transfer, and thereby
no information of laminar flow and heat transfer is learned and
stored in the neural network. This is to show the operation princi-
ple of the artificial neural network. No related database for learning
the mechanism will lead to ANN’s inability of outputting the
needed message. Therefore, the answer is that the currently devel-
oped ANN can not predict laminar flow heat transfer in heat
exchangers well.
The desire to predict laminar convective heat transfer implies
the need updating the ANN a second time. In a similar way as
above using, a new database for training and testing the neural
network 12-9-5-2 is created by all the databases for turbulent
and laminar flow and heat transfer. Totally, two hundreds and sev-
enty-seven sets of data points are obtained. Among these, 190 sets
of data points are for training the 12-9-5-2 secondly while the
remaining ones are for testing the generality. The trained Nusselt
number and friction factor by the ANN 12-9-5-2 are plotted
against the combined database in Fig. 15. It is seen that both the
trained results by the 12-9-5-2 network are close to corresponding
data. The prediction of the friction factor and Nusselt number for
the heat exchangers by the secondly-updated ANN 12-9-5-2 is
shown in Fig. 16. The straight line means that the prediction is
perfect and the dotted lines mean a deviation of 10%. From the fig-
ure, it is found that all the predictions of the Nusselt number is
within a deviation of 10% and the majority (92%) of the predictions
of the friction factor is also within a deviation of 10%. By careful
examination, it is found that most of the predictions are within
4% deviation from the database, as shown in Fig. 17. The scatter
distribution of the deviations shows good agreement with an ac-
cepted error less than 5%. It must be pointed out that in some sit-
uations the measurements and hence the uncertainties or
computations have certain errors, sometimes up to 10%, or 20%
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for turbulent computations. The predictions here reflect this inac-
curacy in the database because the predictions are of course not
better than the perfect measurements or computations. Conse-
quently, the secondly-updated 12-9-5-2 is now used for prediction
of laminar and turbulent flow and heat transfer performance of
the presented heat exchangers having large number of tube rows
and tube-diameter.

In order to again show the confidence that the artificial neural
network approach is superior to correlations for predictions, the
comparison is plotted in Fig. 18. Since the comparison based on
the database for turbulent flow and heat transfer was shown in
previous section, only the database from laminar flow and heat
transfer is used here for this comparison. It can be seen that the
predictions by ANN are better than those by multiple correlations,
Eq. (8). The average errors of f and Nu are 3.84% and 1.85%, respec-
tively. So, the conclusion that the ANN is superior compared to cor-
relations for prediction of the presented heat exchanger is now
supported again.

Also, for convenient use by engineers or researchers, the
weights and biases for secondly-updated ANN 12-9-5-2 are listed
below. The sets of weights and biases can be directly read into
the network by an encoded program so that the turbulent and lam-
inar convective heat transfer of the heat exchangers can be ob-
tained. Thus two sets of weights and biases are provided here for
future research works.
For the first layer, 108 weights and 9 biases are:

w12;9 ¼

0:40 1:47 4:43 5:70 12:00 �5:74 8:12 5:26 4:20

�0:85 1:78 0:67 �3:96 0:39 �3:72 16:75 �6:66 9:40

�5:52 0:37 �2:59 0:72 �2:33 0:69 0:04 0:24 �3:01

13:38 �0:75 7:85 �0:77 �0:81 5:51 2:11 �3:72 �2:16

�1:96 �0:91 �0:20 0:96 �2:64 �0:62 0:56 �1:64 �3:21

4:75 �1:24 �1:27 �0:95 �0:55 0:79 �0:19 �1:69 �3:12

0:82 0:88 �0:53 0:98 �1:51 0:68 �0:18 2:63 �0:48

0:85 0:92 �0:50 1:01 �1:48 0:71 �0:14 2:66 �0:45

0:82 0:88 �0:53 0:98 �1:51 0:68 �0:18 2:63 �0:48

�2:43 �1:49 2:06 �2:05 �0:91 0:37 �0:46 �1:91 0:82

1:38 1:72 �1:12 �2:58 �3:61 1:55 �2:13 �1:66 3:02

1:35 0:14 �1:08 3:70 �3:31 �0:51 �1:28 0:33 �0:87

2
66666666666666666666666664

3
77777777777777777777777775

;

b9 ¼

�3:15

�0:74

�4:66

2:69

�0:65

4:19

�3:57

1:16

0:45

2
666666666666666664

3
777777777777777775
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For the second layer, 45 weights and 5 biases are:

w9;5¼

1:22 �7:12 �1:74 �6:05 �2:06
�2:14 0:76 �0:79 0:17 �4:71
2:95 �2:35 0:81 2:55 �2:21
�2:71 �0:88 �0:88 �2:75 �3:29
�2:14 0:37 �6:07 �3:08 2:55
�0:88 1:62 �1:39 0:30 2:70
4:32 6:67 �3:03 2:01 0:00
�4:50 3:06 �0:83 0:05 2:21
�6:27 �1:76 �3:93 �0:06 �1:44

2
66666666666666664

3
77777777777777775

; b5¼

1:70
�3:85
�2:75
�5:44
�1:11

2
6666664

3
7777775

For the third layer, 10 weights and 2 biases are:

w5;2 ¼

�3:99 4:09
�2:92 �1:04
�6:22 �0:57
�2:84 3:47
�8:19 1:19

2
6666664

3
7777775
; b2 ¼

4:97
�1:78

� �

Here we again present the application geometrical ranges for
heat exchanger having large tube-diameter and large number of
tube rows:

ReDc ¼ 1000—10; 000, Do = 16–20 mm, Nt = 2–12,
Fp = 2–4 mm, Pt = 38–46 mm, Pl = 32–36 mm.

7. Discussion

The users can input the above listed weights and biases into the
specific artificial neural network configuration, in turn to predict
the corresponding performance of heat exchangers when the geo-
metrical parameters are input to the network. The currently pre-
dicted results indicate that the developed ANN might be
extended to predict heat exchanger performance well for different
sets of input data of specific heat exchangers.

The reason for selection of a single ANN to prediction turbulent
and laminar flow and heat transfer is now discussed. The authors
have separated laminar data to train ANN, and the result of the pre-
dicted error is shown in Fig. 19. Compared to Fig. 17, it is recog-
nized that by only using laminar data for training ANN results in
maximum errors of the same level as by using combined laminar
and turbulent data. Although the mixed data slightly reduce the
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Fig. 19. Prediction errors from ANN with laminar data (only laminar data is used for
training the ANN).



Table 3
Prediction errors from ANN and correlations, %.

ANN with turbulent
data

ANN with laminar
data

ANN with combined
database

Power-law correlations Eqs. (1–3), Tang
et al. [34]

Multiple correlations Eq. (10), Xie
et al. [40]

Nu 0.88 0.64 1.85 6.5 3.7
f 0.73 2.59 3.84 8.7 6.5
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Fig. 20. Prediction from the present ANN against experimental data of Wang et al.
[5].
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accuracy of the secondly-updated ANN, superiority compared to
correlations is achieved, as supported by Fig. 18. For multiple cor-
relations, the average errors of f and Nu are 6.5% and 3.7%, respec-
tively. The prediction errors from ANN and correlations are listed
in Table 3. The reasons of combining laminar and turbulent data
for training the ANN are that the flow inside the heat exchanger
passages is complex and no sufficient experimental data exist to
judge whether the flow is laminar or turbulent, and the number
of laminar data is evidently small compared to the number of tur-
bulent data (46 and 231, respectively). In most conditions turbu-
lent flow and heat transfer occur in heat exchanger applications,
hence one may apply the single ANN for prediction or heat exchan-
ger design.

Another issue is the possibility of extending the present ANN to
predict performance of heat exchangers with small tube-diameter
and tube-row. This is addressed here. A typical prediction is plot-
ted in Fig. 20. The experimental data is picked up from Fig. 3 of
Wang et al. [5]. It is clearly seen that severe over-prediction occurs,
indicating that a non-satisfactory result is obtained. This result is
supported by the fact that the developed ANN did not learn any-
thing about the heat exchangers with small values of tube-diame-
ter and tube-row. In Wang et al. [5], the outside diameter of tube
and the number of tube rows are 10 mm and 1 or 2, respectively.
Since fin-and-tube heat exchangers studies are numerous with dif-
ferent geometries, the authors do not and can not collect all infor-
mation about fin-and-tube heat exchangers for ANN prediction.
Therefore, the present work is limited to application of ANN for
such kind of heat exchangers having large tube-diameter and large
number of tube rows, and contributes to successful application of
ANN in thermal sciences.

Improving heat exchanger design is an active research field for
thermal designers. There are many experimental and numerical
studies on design of heat exchangers. However, it is generally diffi-
cult to collect all the data for design, because the extensive costs of
experiments (including costs for setups and manufacturing sam-
ples) and the computer resources for computations. Therefore, the
use of different methods can be considered as alternative techniques
for design. The ANN approach is useful and convenient for engineers
or researchers to predict the performance of a given heat exchanger
with limited experimental data. It does not need to provide an accu-
rate and detailed mathematical formulation. Once the ANN was
trained, the weights and biases from the network, which correspond
to a practical heat exchanger, can be transferred to engineers or
researchers who are going to use the tested data for prediction. Then
engineers may simply feed these data into the trained network and
therefore quickly make accurate predictions of the thermal perfor-
mance for the practical heat exchanger. However, some limitation
should be considered from ANNs, since they do not provide any
knowledge about the physical phenomena and do not correlate the
information. That is, ANN does not know the inherent physical prin-
ciple, and how and why the phenomena occur, or change, or
disappear.
8. Conclusions

In the present work various neural network configurations have
been tested based on experimentally measured databases of Nus-
selt number and friction factor of three kinds of heat exchangers.
It is concluded that the 12-9-5-2 feed-forward neural network is
the most accurate architecture for prediction of turbulent heat
transfer and flow resistance for the fin-and-tube heat exchangers
having plain fins, slit fins and fins with longitudinal vortex gener-
ators with large tube-diameter and large number of tube rows.
Also the presented ANN yields the superior prediction of heat
transfer and flow friction compared to power-law or multiple
correlations.

By extension to train the ANN for the combined database from
experimental data and numerical data by computational fluid
dynamics (CFD) technique, the developed ANN architecture is more
exactly generalized and universal. Therefore the ANN 12-9-5-2
architecture behaves strong ability to predict of heat exchanger per-
formance of turbulent and laminar heat transfer and fluid flow with
an accepted deviation close to the measurement uncertainty/error.

The weights and biases of ANN 12-9-5-2 corresponding to tur-
bulent or laminar model are also provided in this paper so that the
engineering applications or further researches can be carried out.
The ultimate ANN will be trained with more and more accurately
measured or computed data from more heat exchangers and then
will be able to predict heat transfer and flow resistance much bet-
ter. Consequently, the presented ANN in this study is well suitable
for prediction laminar or/and turbulent heat transfer and fluid flow
of such kinds of heat exchangers and for heat transfer analysis. But
it must be remembered that the limitation of ANN is that it can not
describe the unknown physical phenomena directly.
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